
Introduction to Extreme Programming http://www.jera.com/techinfo/
John Brewer • Jera Design • jbrewer@jera.com

The 12 Core Practices of XP:
1 . The Planning Game: Business and development cooperate 

to produce the maximum business value as rapidly as possible. 
The planning game happens at various scales, but the basic 
rules are always the same: 
a. Business comes up with a list of desired features for the 

system. Each feature is written out as a User Story, which 
gives the feature a name, and describes in broad strokes 
what is required. User stories are typically written on 4x6 
cards.

b . Development estimates how much effort each story will 
take, and how much effort the team can produce in a given 
time interval (the iteration).

c. Business then decides which stories to implement in what 
order, as well as when and how often to produce a production 
releases of the system.

2 . Small Releases: Start with the smallest useful feature set. 
Release early and often, adding a few features each time.

3 . System Metaphor: Each project has an organizing 
metaphor, which provides an easy to remember naming 
convention.

4 . Simple Design: Always use the simplest possible design 
that gets the job done. The requirements will change 
tomorrow, so only do what's needed to meet today's 
requirements.

5 . Continuous Testing: Before programmers add a feature, 
they write a test for it. When the suite runs, the job is done. 
Tests in XP come in two basic flavors. 
a. Unit Tests are automated tests written by the developers 

to test functionality as they write it. Each unit test typically 
tests only a single class, or a small cluster of classes. Unit 
tests are typically written using a unit testing framework, 
such as JUnit.

b . Acceptance Tests (also known as Functional Tests) 
are specified by the customer to test that the overall system 
is functioning as specified. Acceptance tests typically test 
the entire system, or some large chunk of it. When all the 
acceptance tests pass for a given user story, that story is 
considered complete. At the very least, an acceptance test 
could consist of a script of user interface actions and 
expected results that a human can run. Ideally acceptance 
tests should be automated, either using the unit testing 
framework, or a separate acceptance testing framework.

6 . Refactoring: Programmers refactor code as needed to keep 
the code as simple as possible. (See right column for XP’s 
definition of simple.) You can do this with confidence that you 
didn't break anything because you have the tests.

7 . Pair Programming: All production code is written by two 
programmers sitting at one machine. Essentially, all code is 
reviewed as it is written. (You can still write non-production 
experimental code solo.)

8 . Collective Code Ownership: No single person "owns" a 
module. Any developer is expected to be able to work on any 
part of the codebase at any time. 

9 . Continuous Integration: All changes are integrated into 
the codebase at least daily. The tests have to run 100% both 
before and after integration.

10. 40-Hour Work Week: Programmers go home on time. In 
crunch mode, up to one week of overtime is allowed. But 
multiple consecutive weeks of overtime are treated as a sign 
that something is very wrong with the process.

11. On-site Customer: Development team has continuous 
access to a real live customer, that is, someone who will 
actually be using the system. For commercial software with 
lots of customers, a customer proxy (usually the product 
manager) is used instead.

12. Coding Standards: Everyone codes to the same standards. 
Ideally, you shouldn't be able to tell by looking at it who on 
the team has touched a specific piece of code.

What does “Simplest” mean?
XP actually has a very specific definition of "simplest" (based on 
the list in Extreme Programming Explained, p.109):
1 . The system (code plus tests) clearly communicates everything 

that needs to be communicated at the current instant in its 
development. This means that it runs every existing test, and 
that the source code clearly reveals the intention behind it to 
anyone who reads it.

2 . The system contains no duplicate code, unless that would 
violate (1). 

3 . The system contains the minimum number of classes possible 
without violating (1) or (2).

4 . The system contains the minimum number of methods 
possible, consistent with (1) (2) and (3). 

Some Common XP Terms
Business the part of an organization that wants a program 

written, usually because they can make or save money by 
using it themselves, or make money by selling it.

Customer a person or group of people who represent the 
interests of business to the development team. The ideal 
customer is either a user of the system, or a proxy for the 
users, such as a product manager.

Development the part of an organization that writes programs, 
usually to meet the needs/requirements of business.

Iteration a period of fixed duration (typically 1, 2 or 3 weeks) 
during which a set of features is added to the system.

Story a description, written by the customer, of a single desired 
additional feature of the system being developed. Typically 
written on a 4x6 card.

XP Resources
B o o k s
Extreme Programming Explained by Kent Beck. Addison-

Wesley 2000. The first book on XP published, and still the 
best introduction.

Refactoring: Improving the Design of Existing Code 
by Martin Fowler. Addison-Wesley 1999. The definitive book 
on refactoring. Refactoring is essential to XP, but still 
extremely useful to anyone engaged in object-oriented 
programming.

Extreme Programming Installed by Ron Jeffries, Ann 
Anderson, and Chet Hendrickson. Addison-Wesley 2001. A 
book on XP by and for programmers. Lots of good real-world 
advice from people who have been doing XP the longest.

Planning Extreme Programming by Kent Beck and Martin 
Fowler. Addison-Wesley 2001. An entire book on the XP 
planning practice, going over iteration and release planning 
in detail.

Web Sites
Extreme Programming FAQ maintained by John Brewer.

http://www.jera.com/techinfo/xpfaq.html
C2 Wiki a user-editable and extensible site containing lots of 

information about XP and patterns.
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

Software
JUnit a unit testing framework for Java.

http://www.junit.org/
xUnit Unit testing frameworks for other languages.

http://www.xprogramming.com/software.htm
Groups
extremeprogramming public Yahoo! Groups mailing list on 

Extreme Programming.
http://groups.yahoo.com/group/extremeprogramming

BayXP Bay Area XP Users Group
http://www.jera.com/bayxp/


